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ABSTRACT

Supervised fine-tuning (SFT) has become the de facto post-training strategy for
large vision-language-action (VLA) models, but its reliance on costly human
demonstrations limits scalability and generalization. We propose Probe, Learn,
Distill (PLD), a three-stage plug-and-play framework that improves VLAs through
residual reinforcement learning (RL) and distribution-aware data collection. In
Stage 1 (specialist acquisition), we freeze the VLA backbone and train lightweight
residual actors via off-policy RL. These specialists take over in states where the
base policy fails, thereby probing failure regions of the VLA generalist. In Stage 2
(data collection), we employ a hybrid rollout scheme that biases residual inter-
ventions toward states frequently visited by the base policy, aligning collected
trajectories with the generalist’s deployment distribution while capturing recovery
behaviors. In Stage 3 (fine-tuning), these curated trajectories are distilled back into
the generalist with standard SFT, applicable to both flow-matching and autoregres-
sive heads. We evaluate PLD across diverse settings: it achieves a near-saturated
99% task success rate on the LIBERO benchmark, delivers over 50% performance
gains in SimplerEnv, and demonstrates a 100% success rate on real-world Franka
arm and YAM arm dexterous manipulation tasks. We further provide ablations
showing that residual policy probing and distribution-aware replay are key to col-
lecting deployment-aligned data that improves VLAs’ capabilities on both seen
and unseen tasks. Our results demonstrate that RL-generated, policy-aligned data
can surpass teleoperation-only demonstrations, offering a scalable path toward
self-improving VLA models.

Q: Pick up the blue cube

Q: Plug in the yellow peg

Q: GPU Insertion (Stage 2)

Q: GPU Insertion (Stage 4)

Q: GPU Insertion (Stage 3)

Q: GPU Insertion (Stage 1)

Figure 1: We demonstrate the performance of PLD on several real-world challenging manipulation
tasks. The robot successfully picks up diverse objects and conduct peg insertion for Franka arm.
Besides, we also deploy PLD on YAM bi-manual settings, showing PLD policy continuously per-
form a continuous 1-hour cycle of GPU insertion and unplugging without human resets. (Videos
at https://wenlixiao.com/self-improve-VLA-PLD)
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Figure 2: Synergetic effect of PLD data. We fine-tune π0 on subsets of LIBERO-90 with varying
task coverage ratios, where each ratio (10–80%) indicates the fraction of distinct task instances
included in training relative to the full 90-task distribution. For each ratio, we randomly sample 4
disjoint subsets of tasks and report the averaged results. The x-axis thus represents the degree of task
coverage (not the number of trajectories), while the evaluation is always conducted on all 90 tasks.
We compare different data formulations: PLD data yields the highest in-distribution performance
while retaining the cross-task generalization property of high-quality human data. It further enables
modest-level zero-shot transfer even when trained on only 10% of tasks (24.4% SR on unseen tasks),
whereas the VLA fine-tuned on base-policy rollout data (0-1 REINFORCE) underperforms and fails
to generalize. (Success rate numbers are reported in Table 3.)

1 INTRODUCTION

Supervised fine-tuning (SFT) has become the standard post-training paradigm for large language
models (LLMs): after broad pre-training, models are adapted to downstream applications by training
on curated instruction–response pairs, yielding many improvements in language following, safety,
and generalization (Ouyang et al., 2022; Anil et al., 2025). Inspired by these successes, the same
recipe is now being applied to robot foundation models, particularly vision-language-action (VLA)
policies, where large, heterogeneous robotics and vision-language datasets provide the base initial-
ization, and SFT specializes models to specific tasks and embodiments (O’Neill et al., 2024; Ghosh
et al., 2024; Kim et al., 2024; 2025; Black et al., 2024; Bjorck et al., 2025). However, transfer-
ring this paradigm from language to robotics is a unique challenge. Collecting high-quality robot
demonstrations is both costly and labor-intensive, making large-scale datasets much harder to ob-
tain. Even when such data are available, they are often collected through teleoperation pipelines that
are decoupled from the deployed VLA policy, leaving critical coverage gaps: human operators must
manually anticipate and correct failure modes, but their demonstrations rarely reflect the actual dis-
tribution of states the policy will encounter at deployment. As a result, while SFT reliably improves
performance on the tasks it is trained on, much less is understood about whether these gains transfer
to new tasks and environments.

These challenges raise the following question: Can VLA models improve themselves using RL-
curated data with minimal human effort? Specifically, can this self-curated training match or surpass
fine-tuning on human-expert (oracle) teleoperation data, both in-distribution and out-of-distribution?
Our central observation is that data collection should not be agnostic to the base policy: the data-
collecting policy and the generalist must interact, so that exploration leverages the generalist’s prior
knowledge and collected data remain aligned with its trajectory distribution. A natural way to in-
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stantiate this idea is to employ reinforcement learning (RL) to acquire task-specific specialists that
guide data collection. However, applying RL in this setting is hindered by two key challenges.
Sparse reward signals in language-conditioned manipulation tasks render RL unstable and sample-
inefficient. Moreover, training task-specific experts independently from the generalist introduces
distributional mismatch, and once these experts converge, their behavior often lacks the diversity
needed to provide robust coverage for SFT.

Motivated by these challenges, we introduce PLD, a three-stage post-training pipeline. Stage 1:
Online specialist acquisition. We freeze the VLA backbone and train several lightweight residual
actors for multiple tasks via sample-efficient off-policy RL, enabling them to “take over” the base
policy at arbitrary states and achieve above 99% task success. Stage 2: Automatic data collection.
We propose a hybrid rollout scheme that biases residual takeovers toward states frequently visited
by the base model, mitigating distribution shift while capturing recovery behaviors. Stage 3: Su-
pervised fine-tuning. The collected data for multiple tasks are distilled back into the base model
through SFT, a process agnostic to VLA architectures, supporting both flow-matching and autore-
gressive action heads (Black et al., 2024; Kim et al., 2024). An overview of our pipeline can be found
in Figure 3. With PLD, we can efficiently acquire task-specific RL experts through VLA-guided
exploration. Consequently, the VLA further improves using the PLD data, achieving performance
above 99% on the LIBERO benchmark.

This paper makes the following contributions: 1) Autonomous post-training recipe. We propose a
post-training pipeline that enables VLA models to improve autonomously without relying on addi-
tional oracle demonstrations. Our method achieves near-saturated 99% success rates on the LIBERO
benchmark, and delivers over 50% performance gains in SimplerEnv, underscoring both its effective-
ness on seen tasks and its ability to generalize to unseen ones. 2) Systematic study of RL-generated
data. We analyze the key components of automatic data collection most beneficial for SFT, and con-
duct extensive experiments in simulation and on real robot hardware to examine how RL-generated
data influences generalization to unseen tasks. 3) Comprehensive empirical validation. We provide
large-scale ablations of our design choices. Besides, we showcase >99% success rate on Franka arm
and YAM arm dexterous manipulation tasks. Achieving continuous GPU insertion and unplugging
operating for 1 hour without human intervention, offering potential for data-efficient post-training
of robot foundation models.

2 PRELIMINARIES

2.1 TASK FORMULATION

We study language-conditioned manipulation with sparse binary rewards using Vision–Language–
Action (VLA) models as the base policy class. We assume a partially observed control process with
horizon T , where an episode terminates and resets on task success with a restricted time limit. After
each episode, a reward r ∈ {0, 1} is assigned. Let g denote the language prompt of goal specifica-
tion, and let ot denote partial observations comprising robot proprioception (e.g., joint angle) and
RGB images input. The policy consumes (ot, g) and outputs a 7-DoF action (6-DoF delta pose and
1-DoF continuous gripper command), which we express as at = Dϕ

(
hθ(ot, g)

)
, where hθ is a

vision–language backbone and Dϕ is an action head. Consistent with recent VLA models, Dϕ is in-
stantiated by one of three common families: (i) a diffusion or flow-based action head for continuous
control (Ghosh et al., 2024; Black et al., 2024), or (ii) a discrete action tokenizer for autoregressive
decoding (Kim et al., 2024; Pertsch et al., 2025). We aim to maximize success rate Σ̄r by tuning ϕ
and θ.

2.2 SUPERVISED FINE-TUNING

Given a VLA policy and a demonstration dataset D = {(ot, gt, at)} of observations ot, goal spec-
ifications gt, and expert actions at, SFT adapts the policy by maximizing the conditional action
likelihood. Letting xt = (ot, gt), the canonical objective is the behavior cloning (BC) loss. In
contemporary VLA systems, the loss instantiation depends on the action head architecture. Auto-
regressive/token heads (Kim et al., 2024; Pertsch et al., 2025) train with sequence NLL over action
tokens u1:K :

LAR(θ) = −Ek∼[K]

[
log pθ

(
uk | u<k, x

)]
,
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Figure 3: An overview of PLD. Our pipeline consists of three stages: 1) learning specialist residual
policy for each task via online off-policy RL, with efficient exploration guided by a frozen VLA
generalist; 2) Automatic generation of hybrid trajectories by having the VLA rollout for the first
t steps and let the specialist takeover to generate recovery data; 3) Supervised fine-tuning using
collected multi-task PLD data; 4) Deploy the fine-tuned generalist to diverse manipulation tasks in
zero-shot.

With recent work improving efficiency via action chunking and parallel decoding, and a continuous
action parameterization trained by an ℓ1 regression objective (Kim et al., 2025). Diffusion heads
model a conditional denoising process for actions and train via score-matching MSE:

Ldiff(θ) = Et,ϵ,(x,a)
[∥∥ϵ− ϵθ(a

(noisy)
t , x, t)

∥∥2
2

]
,

enabling iterative sampling at inference (Ghosh et al., 2024; Chi et al., 2024). Flow-matching
heads learn a continuous velocity field to transport a prior to the action distribution, trained with
an L2 flow-matching loss, and are often paired with VLM backbones for semantically grounded
control (Black et al., 2024; 2025). Across these heads, SFT remains the standard mechanism to
specialize a generalist policies to new embodiments and tasks using modest labeled robot data (Kim
et al., 2024; 2025).

2.3 GOAL-CONDITIONED RL

We model continuous control as an MDP (Bellman, 1957)M = (S,A, ρ, ρ0, r, γ) with state space
S, action space A, transition dynamics ρ(s′ | s, a), initial-state distribution ρ0, reward function
r, and discount γ ∈ (0, 1]. In goal-conditioned settings, each task is specified by a goal variable
g ∈ G drawn from p(g); the reward becomes goal-dependent r : S ×A× G → R, and the policy is
π : S × G → ∆(A), written π(a | s, g). It is convenient to view GCRL as an augmented MDP on
S × G with stationary goals:

ρ̃
(
(s′, g) | (s, g), a

)
= ρ(s′ | s, a) · 1{g′ = g}.

Under the infinite-horizon setting, the RL objective is

J(π) = Eg∼p(g) Es0∼ρ0, at∼π(·|st,g), st+1∼ρ(·|st,at)[
∑∞

t=0
γt r(st, at, g)]. (1)

In this paper, we consider a sparse binary reward setting, i.e., r(s, a, g) = 1
[
d
(
ϕ(s), g

)
≤ ε

]
defined

via a success predicate over a goal-relevant representation ϕ(s), a metric d, and tolerance ε > 0.

3 METHODS

Method Overview We study the synergy between data produced by our method when a modest
generalist VLA serves as the policy prior. The premise is that, if we exploit the base policy’s prior
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correctly, it can both solve hard tasks quickly and explore efficiently. While recent work explores
direct RL fine-tuning of large VLA (Mark et al., 2024; Dong et al., 2025b), such formulas can be
resource-intensive even for single-task tuning: e.g., OpenVLA-OFT requires per-GPU memory up to
∼62.5 GB for LIBERO training at a batch size of 8 (Kim et al., 2025). Meanwhile, it remains unclear
whether these approaches scale gracefully to multi-task fine-tuning under heterogeneous setups. We
therefore opt for a decoupled pipeline. We freeze the base policy πb and learn a lightweight residual
action policy πδ with sample-efficient off-policy RL (Gaussian policy parameterization). We then
collect expert data by letting the residual “take over” after specified steps of “base policy probing”.
Finally, we distill these skills back into the base model via SFT and deploy the generalist on diverse
manipulation tasks. We provide the overview of PLD in Figure 3.

3.1 DATA EFFICIENT RL VIA POLICY PRIOR WARM-START

Building upon the previous success of sample-efficient RL with prior data (Ball et al., 2023), we con-
sider an off-policy actor-critic framework and maintain two separate buffers for offline and online
experience replay. We first fill the offline buffer with successful rollouts Boffline = {τ1, τ2, . . . }
from the base policy πb. This process serves as an importance sampling to preserve only the success-
ful attempts. During training, the offline and online experiences will be replayed symmetrically; for
example, mini-batches consist of equal samples from both buffers, ensuring that the value function
is constantly trained on high-value state-action pairs.

In practice, we train a task-specific residual action module πδ(·|s, ab) conditioned on ab ∼ πb.
We use πδ to explore near the base policy behavior, actively searching for more optimal solutions
guided by the Q-function. To modulate exploration and avoid deviating drastically from πb during
the initial phase, the delta action’s magnitude is scaled down to [−ξ, ξ], where ξ ∈ [0, 1] is tuned
by a scheduler. This design choice is two-fold: First, although unable to perfectly generalize to
an unseen manipulation task or scenario, the base policy can make reasonable attempts to solve
the task, serving as a useful initialization for exploration. Moreover, directly training the expressive
foundation policy (e.g., flow action heads) to maximize the Q-value can be extremely difficult (Mark
et al., 2024). In contrast, a residual Gaussian policy can be easily trained through any off-the-shelf
off-policy RL algorithm.

Alongside πδ , action value function Qπ̄ acquired through policy iteration and TD-learning (Sutton
& Barto, 2018) as in Equation (2), where π̄(·|s) is the combined policy.

Qπ̄(st, āt)← r(s, a) + γEst+1∼p(·|st,āt)[Q
π̄
target(st+1, āt+1)], ā = ab + aδ (2)

To stabilize off-policy learning and mitigate forgetting, we introduce a warm-up stage using solely
πb for data collection akin to (Zhou et al., 2024b). Meanwhile, the Q-function is initialized by a
conservative objective such as Cal-QL (Nakamoto et al., 2024). Importantly, we do not explicitly
enforce behavior constraints to policy loss, such that the resulting expert π̄ is less influenced by
either data quality or base policy performance.

3.2 BOOTSTRAPPING RL SPECIALIST FOR SCALABLE DATA GENERATION

We then turn to the question of how to collect demonstration data using RL specialists. Data col-
lected through RL experts is highly optimal, with consistent behavior and nearly no hesitation,
demonstrating smooth solutions that finish tasks with a shorter horizon. However, such a narrow
distribution of unimodal expert behavior may leave out-of-distribution and failure states underrepre-
sented. Thus, scaling purely expert data may not result in a performance gain, but instead risks the
generalist overfitting on these data and harming both robustness and generalization (As discussed in
the following section).

To mitigate this issue, we propose a hybrid data collection scheme that incorporates base-policy
initialization: We first rollout the base policy for random steps, then let the learned residual RL
policy to take over, resulting in demonstration trajectories τdemo = {(s1, ab,1), . . . , (st−1, ab,t−1)}∪
{(st, ab,t + āt), . . . } that contain the behavior of the expert recovering from a potential suboptimal
region. We refer to this procedure as base policy probing. Accordingly, we boost the robustness of
the RL expert by training the RL expert on an initial state distribution s0 ∼ pπb0 given by random
steps of base policy probing. The probing step only serves as state initialization and will not be
added to the replay buffer. The details of PLD are summarized in Algorithm 1.
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Recover Ratio: 40%Recover Ratio: 20%Recover Ratio: 0%

Language Prompt: Open the bottom drawer

Figure 4: Visualization of Data diversity. We visualize PLD data with different base policy ini-
tialization probing horizons. Increasing probing horizon yields longer episodes and greater diversity
among successful trials. This broader data support leads to improved fine-tuning performance, which
eventually saturates.

4 EXPERIMENTS

In this section, we systematically evaluate PLD. We first demonstrate the efficiency of PLD-RL in
solving sparse-reward manipulation tasks, which serves as the cornerstone of our pipeline. Then we
focus on study 1) How does the probing mechanism of PLD benefit VLA SFT; 2) How does PLD
data compare with other sources of demonstrations (e.g., human data, RL expert rollout, VLA base
policy rollout). Finally, we investigate the key factors of our pipeline and how they contribute to
improving the performance of VLA.

We consider simulation as a proxy to real-world performance, and evaluate methods across two
widely adopted simulation benchmarks, including LIBERO (Liu et al., 2023), SimplerEnv (Li
et al., 2024). LIBERO is a lifelong learning benchmark focused on language-guided manipulation
tasks. It comprises 130 language-conditioned manipulation tasks grouped into four suites that stress
object distribution, spatial arrangement, task goals, and their mixture. SimplerEnv is a robotics
manipulation benchmark that aims for high sim-to-real correlation.

In the following sections, we analyze different data sources: PLD data DPLD, Human data DHuman,
RL expert data (RL expert rollout w/o base policy probing)DRL, and base-policy rollout data (Selec-
tive successful rollouts, also referred to as ”self-bootstrap data”)DBase Policy. Unless stated otherwise,
all methods use identical data volume, training budgets, augmentation, and hyperparameters across
architectures; the default base policy we used is π0 (Black et al., 2024).

4.1 EFFECTIVENESS AND EFFICIENCY OF LEARNING RL SPECIALIST

In this section, we seek answers to the following questions: Does PLD benefit from both policy
guidance and hybrid online learning? We compare state-of-the-art methods that leverage policy
priors and data priors: WSRL (Zhou et al., 2024b) (offline initialization only); RLPD (Ball et al.,
2023) (No base policy guidance). For the pre-training stage, we collect a dataset of 50 trajectories per
task, containing only the successful trials of the same base policy (π0), and using Cal-QL (Nakamoto
et al., 2024) as the default pre-training algorithm. Subsequently, we retain these data for methods
with online hybrid data replay. We plot the training curve of 250k steps of online interaction,
showing mean rollout performance and 95% CIs (confidence level) across 3 seeds in Figure 5.

PLD outperforms baseline methods by a large margin across 8 tasks on LIBERO-90, indicating that
PLD effectively exploits the VLA policy prior and yields pronounced sample efficiency at low in-
teraction budgets. In terms of asymptotic performance, PLD can achieve over 95% performance on
every task that we report to fine-tune performance (over 120 manipulation tasks). Notably, we ob-
serve an initial performance drop for PLD. This phenomenon implies the initial phase of exploration,
where the residual policy starts to diverge from the base policy and visits potentially suboptimal
states. Ablation study on PLD-RL’s design choice can be found in the Section B.2.
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Figure 5: Benchmarking Sample-Efficient RL Performance. We compare PLD with RL baseline
algorithms that either leverage policy prior or data prior. We report mean rollout performance (Av-
erage return calculated within a sliding window of 100 episodes) and 95% CIs for 3 seeds across 8
manipulation tasks selected from LIBERO-90.

Table 1: Performance on LIBERO benchmark of VLA models fine-tuned on PLD data.
π0 OpenVLA

Model Spatial Object Goal Avg Spatial Object Goal Avg

Baseline (SFT/OFT) 95.2 97.6 87.4 93.4 92.9 99.1 83.25 91.8

w/ PLD 97.7 98.5 95.3 97.2 99.5 99.1 98.9 99.2
∆ +2.5 +0.9 +7.9 +3.8 +6.6 +0.0 +15.7 +7.4

4.2 IN-DISTRIBUTION PERFORMANCE

Success Rate

LIBERO-Long

Human data (oracle)
Bootstrapping data PLD rollout

Figure 6: Short-to-long generaliza-
tion. π0 fine-tuned on LIBERO-90 and
one-shot evaluated on LIBERO-10 long
horizon tasks.

In this section, we investigate how effectively the pro-
posed pipeline enhances the performance of the VLA.
We evaluate in-distribution fine-tuning on the LIBERO
benchmark using three subsets, each consisting of 10
language-conditioned tasks: LIBERO-Object, LIBERO-
Spatial, and LIBERO-Goal. We additionally report re-
sults on a custom suite that consists of 4 tasks from Sim-
plerEnv. To demonstrate architecture-agnosticism, we in-
stantiate the base VLA with (i) OpenVLA (autoregres-
sive action tokens) (Kim et al., 2024) and (ii) π0 (flow-
matching action head) (Black et al., 2024). Since VLA
models are mainly trained on real-world datasets that can-
not work out of the box on simulation benchmarks, we
leverage their official checkpoints for model fine-tuning
on each benchmark as the baseline. At test time, each
policy is evaluated on 50 episodes per task, and we re-
port the mean success rate per suite and average over the
benchmark. Table 1 and Table 2 list the performance
gain achieved by further applying our method. Across all
suites and both architectures, PLD data yields consistent
absolute gains over human-only SFT while requiring no
additional human demonstrations. We observe that larger
PLD datasets monotonically improve in-distribution suc-
cess and that the distilled generalist notably surpasses the average specialist, indicating effective
transfer of task-specific competence into the base VLA.
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Table 2: Evaluate PLD on SimplerEnv
Model WidowX Pick Eggplant WidowX Pick Carrot Google Open Drawer Google Coke Can Avg

Octo-SFT 65.5 43.3 92.5 85.7 71.8

w/ ours 97.8 93.9 99.3 95.5 96.6

∆ +32.3 +50.6 +6.8 +9.8 +24.9

Testing EnvTraining Env

open the middle drawer of the cabinet
Libero-Goal-0

open the top drawer and put the bowl inside
Libero-Goal-3

put the cream cheese in the bowl
Libero-Goal-6

Libero-Goal

Task 6 Task 8 Task 11Task 2

Libero-90

scale up training (                      ) dataset

Li
be

ro
-9

0
SR
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)  
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r 

   
   

   
 

put the black bowl in the top drawer of the cabinetTask 2

open the top drawer of the cabinet and put the bowl inTask 8
open the top drawer of the cabinetTask 11

open the bottom drawer of the cabinetTask 6

Base Policy Rollout Data RL Rollout (w/o probing) PLD Data (w/ probing)

Figure 7: Few-shot generalization. Scaling in-distribution (LIBERO-goal) PLD yields better few-
shot performance on new tasks (LIBERO-90).

4.3 GENERALIZATION

Generalization to Unseen tasks To study the synergetic effect of PLD data, we examine whether
PLD data improves zero-shot performance on unseen tasks in the LIBERO benchmark (Liu et al.,
2023). Concretely, we fine-tune π0 via SFT using data drawn from the disjoint coverage subsets
of LIBERO-90 in proportions {0.1, 0.3, 0.6, 0.8, 1.0}; for each coverage level, we randomly sample
tasks to form a new subset in distribution and then evaluate all tasks in the suite. We sampled 4 sub-
sets for each coverage level to provide a more unified result. We consider three different data sources:
(i) Ours DPLD, (ii) human expert data DHuman, and (iii) self-bootstrapping data Dπ0 rollout (equal to
0-1 REINFORCE). We visualize the result in Figure 2. Across coverage levels, π0 fine-tuned on
DPLD attains the strongest in-distribution performance and maintains robust zero-shot transfer to
unseen tasks; human data-only SFT achieves approximately a similar level of zero-shot generaliza-
tion at the same training budget but lags on in-distribution tasks; π0 self-bootstrapping rollout data
underperforms in-distribution and fails to generalize to out-of-distribution tasks.

Generalization to Out-of-domain We study few-shot generalization for tasks with different
goals, layouts, and backgrounds. We first collect PLD data of varying scales set on source tasks
(LIBERO-Goal) and evaluate the fine-tuning performance on target tasks (LIBERO-90). Specifi-
cally, the VLA is also fine-tuned on a small number of oracle demos of target tasks. To analyze
transfer by skill family, we select tasks from LIBERO-goal and LIBERO-90 that have high semantic
correlation to form a set of source/target tasks. We scaled the size of |DPLD| from 50 to 500 tra-
jectories and compared against DRL and DBS under the same data and training budget. As shown
in Figure 7, we observe monotonic improvements in SFT performance as the data scales from 50 to
500 trajectories.

Generalize to Long-horizon We assess skill composition ability on LIBERO-100 by fine-tuning
the base VLA on LIBERO-90 (source) and evaluating one-shot (give one human demo each) on
the held-out LIBERO-10 long-horizon tasks (target). To construct PLD data, we first train residual
RL specialists independently on each LIBERO-90 task, then aggregate their successful rollouts.
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As shown in Figure 6, the fine-tuning of the data PLD exceeds the tuning of the data from the
baseline policy roll-out (self-bootstrapped), but still falls short of the performance achieved with
demonstrations by human experts.

Emergent recover behaviour probed by PLD

Stuck there forever

Failure Mode (VLA FT with RL/Human DataDataset State Coverage

PLD Data
RL Rollout

w/o probing

Human Data

Recover Mode (VLA FT with PLD Data

OOD State

x
x
x

Figure 8: Visualization of failure mode and recovery behavior in the real-world.

4.4 REAL-WORLD PERFORMANCE

We evaluate our approach on a 7-DoF Franka Emika Panda arm in the real world, considering
two sets of canonical manipulation tasks: pick-and-place and peg insertion, illustrated in Figure 1.
Unlike prior works (Luo et al., 2025; Zhou et al., 2024b), we do not restrict task randomization,
making real-world reinforcement learning particularly challenging. A more detailed experimental
setup is provided in Section D.1.

Data collection and policy training. We first collected 200 teleoperated trajectories to perform
supervised fine-tuning (SFT) of the base policy π0. Using this initialization, we trained π0-PLD
and π0-RLPD without human interventions. Both policies reached 100% success on the two tasks
within 2 hours of training. We then leveraged the learned expert policies to autonomously collect
200 successful demonstrations each, forming datasets DPLD and DRLPD, which were subsequently
used to further SFT π0, yielding +DPLD, +DHuman, and +DRLPD.

Performance and failure modes. Across 30 randomized trials per task, all methods achieved
perfect success on peg insertion (30/30), demonstrating robust reactive skills. In cube pick-up,
however, +DRLPD and +DHuman succeeded in only 16/30 and 10/30 trials, respectively, while +DPLD

maintained 30/30. Figure 8 illustrates a typical failure: policies trained on DRLPD or DHuman often
pushed the cube into the upper-left corner, where the gripper became stuck. By contrast, +DPLD was
reliably recovered by repositioning the cube before grasping. Distribution analysis confirms that
neither human demonstrations nor RL rollouts visited such corner states, whereas PLD explicitly
probed the base policy and generated diverse trajectories that captured these cases. This explains its
robustness and highlights its potential as a self-improving data flywheel. We also consider a more
challenging setting of the randomized evaluation environment, demonstrating the generalizability of
PLD even in the real world. Details can be found in Section D.2.

Robustness for long-horizon tasks. To evaluate the robustness of PLD in executing long-horizon
and dexterous manipulation tasks, we set up two 6-DoF YAM robot arms developed by I2RT-
Robotics (2025). We consider an industrial insertion task—specifically, inserting a micro graphics
card into a motherboard. To enable fully autonomous operation without human intervention or re-
setting, we decompose the task into four stages: Stage 1: Pick up the GPU from the table and insert
it into slot 1. Stage 2: Move the GPU from slot 1 to slot 3. Stage 3: Firmly insert the GPU into slot
3. Stage 4: Unplug the GPU from slot 3 and place it back on the table. A reward classifier is trained
to govern the state machine that coordinates these stages. After at most 8 hours of training for each
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Pick Up the Red Cube

Pick Up the Blue Cube

Plug in the Peg

One           Model to perform the following tasks-SFT

Figure 9: Real-world Generalization Performance. We evaluate one model’s multi-task perfor-
mance on three language-conditioned manipulation tasks, including pick-and-place and peg inser-
tion.

subtask and distilling the learned skills into a single BC base policy, the system can continuously
perform the full task loop without human assistance for at least 1 hour. As shown in the video,
although the one-shot success rate for each stage is not 100%, the system is capable of recovering
from failures, keeping the data flywheel running autonomously.

PLD Data (Ours)RL Rollout DataBase Policy Rollout Data

Figure 10: Visualization of different data sources. We plot 20 trajectories for each method (task
prompt: “pick up the black bowl and place it on the plate”). RL expert data is of high quality but
lacks diversity and diverges far from base policy behavior, while PLD data aligns better with the
base policy and contains diverse recovery behavior. (More interactive visualizations at https:
//wenlixiao.com/self-improve-VLA-PLD).

4.5 HOW DOES PLD WORK?

We take a deeper look at the underlying reason for PLD data’s bonus in generalization. As shown
in Figure 10, we plot 50 trajectories for each method (task description: “open middle drawer of
the middle cabinet”). RL expert provides optimal and concentrated solutions to the task, but lacks
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diversity and diverges far from the behavior of the base policy, while PLD data are clustered near
the trials of the base policy and contain various recovery behaviors. Based on empirical observation,
we hypothesize that due to the base policy probing, PLD data provides a solution that is biased
towards the base policy, thus fine-tuning forgets less of the base model’s generalizability. This
resembles observations in LLM fine-tune (Shenfeld et al., 2025), where the KL-divergence can serve
as an indicator of forgetting. Meanwhile, large data coverage also benefits robustness in sequential
decision making (Kelly et al., 2019).
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Figure 11: Ablation of Probing Hori-
zon. Performance plateau at α = 0.6.

In addition, we study sensitivity to the initialization hori-
zon. We choose task 0-9 from LIBERO-90, change the
steps we used to initialize the random sample, initiat-
ing steps Tbase ∼ [0, αT ] to rollout the base policy.
α ∈ [0.0, 0.2, 0.4, 0.6, 0.8]. As α increases, the average
episode length of successful trajectories increases, indi-
cating a detour required to correct the suboptimal behav-
ior of the base policy. As demonstrated in Figure 11, per-
formance plateaus at α = 0.6 and drops as α increases
further. This is consistent with our analysis that SFT ben-
efits from the data diversity.

5 RELATED WORK

5.1 ROBOTICS FOUNDATION MODELS

Following the success of large language models and vision language models (Brown et al., 2020;
Touvron et al., 2023; Chen et al., 2022), recent works on robotics foundation models turned to a
similar transformer-based architecture with aggressive data scaling. This inspired earlier works in
VLAs such as RT-1, RT-2, and OpenVLA, etc. (Brohan et al., 2023b;a; Kim et al., 2024; Xue et al.,
2025). Meanwhile, diffusion-based action generation, explored in Chi et al. (2024), takes motivation
from generative modeling techniques (Ho et al., 2020), demonstrating smooth and accurate action
generation. This has led to more recent VLA architectures to-date, such as Octo (Ghosh et al.,
2024), OpenVLA-OFT (Kim et al., 2025), GR00T (Bjorck et al., 2025), and the π-series of models
(Black et al., 2024; 2025; Pertsch et al., 2025). The VLA training procedure is typically analogous
to VLM training. First, model weights are initialized from the respective VLM backbones (Kim
et al., 2024; Black et al., 2024). Then, the model is supervised with next-token-prediction tasks
on diverse pretraining datasets, spanning across multi-modal web data (Black et al., 2025) such as
COCO (Chen et al., 2015) and VQAv2 (Goyal et al., 2017), and robotics-specific, cross-embodiment
data (Khazatsky et al., 2025; O’Neill et al., 2024). Finally, supervised fine-tuning is conducted on
a small set of high-quality teleoperation data collected from the target robot deployment platform
performing the target tasks.

5.2 SAMPLE-EFFICIENT RL WITH DATA AND POLICY PRIORS

Sample and exploration efficiency have been a long-standing problem in RL, especially in sparse-
reward settings. Recent works have explored leveraging offline data to improve sample efficiency.
Offline-to-online transfer (Vecerik et al., 2017; Nair et al., 2020; Kostrikov et al., 2021; Nakamoto
et al., 2024; Zhou et al., 2024b; Li et al., 2025) considers a two-stage pipeline that first initializes
policy or critic using pessimism or constrained objective in offline RL Levine et al. (2020) and
follows with an online fine-tuning phase to have new data collected and alleviate distributional shift;
Hybrid RL (Song et al., 2022; 2024; Ball et al., 2023) considers online RL with access to an offline
dataset. Given expert demonstration, one can either continuously replay this data to ensure high-
value state visitation Ball et al. (2023) or to guide exploration Dong et al. (2025a). Data prior can
also guide reset-free real-world learning (Walke et al., 2023; Sharma et al., 2023). Another line of
work assumes access to policy prior, such as a pre-trained generalist. Ye et al. (2023); Chen et al.
(2025); Jülg et al. (2025) leverage foundation policy to guide RL through an auxiliary behavior
regularization objective. Action editing is another efficient way to improve upon the policy prior.
ResiP (Ankile et al., 2025) considers learning a residual policy through PPO (Schulman et al., 2017),
while EXPO (Dong et al., 2025b) considers an off-policy solution and co-trains the base policy
during the process. Our work leverages a suboptimal base policy to achieve a non-zero success rate
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for warm-starting exploration, but does not require access to oracle demos or a human expert for
further intervention.

5.3 VLA POST-TRAINING

The prevailing large-scale recipe for VLA post-training is to pretrain on diverse, heterogeneous
robot data and then fine-tune on task-specific demonstrations (Zhou et al., 2024a; Black et al., 2024).
For example, Black et al. (2024) performs supervised post-training on a carefully curated task-
targeted corpus, with per-task coverage ranging from a few to over 100 hours of teleoperation.
Because such post-training data are expensive to acquire, the authors note that most diversity must
come from the pretraining mixture—underscoring a key limitation of pure SFT: data scarcity and
limited coverage at adaptation time. To enable self-improvement, prior work has explored scaling
high-quality data via online RL specialists (Ball et al., 2023). However, these pipelines often require
substantial human intervention and collect data in a large way agnostic to the generalist’s behavior,
restricting scalability. Other lines investigate on-policy RL for post-training (Lu et al., 2025; Tan
et al., 2025), or optimize single-task fine-tuning at the expense of generalization (Chen et al., 2025).
Our work jointly targets these limitations by seeking a post-training pipeline that reduces human
effort, aligns data collection with the generalist’s state distribution, and remains sufficiently sample
efficient for real-world systems.

6 CONCLUSIONS

We presented PLD, a three-stage post-training pipeline that enables VLA models to improve au-
tonomously without relying on additional oracle human demonstrations. PLD couples a frozen VLA
generalist with lightweight residual RL specialists to warm-start exploration and distills curated suc-
cesses back into the base model with standard SFT. Across large-scale simulation experiments and
real-world deployment, PLD improves without additional human demonstration, achieving near-
saturated ∼99% success on LIBERO, >50% gains in SimplerEnv, and robust real-world perfor-
mance. Ablations identify residual policy probing and distribution-aware replay as key to stability,
sample efficiency, and generalization. We consider PLD as a practical step toward autonomous,
scalable post-training and a foundation for future work on multi-embodiment transfer, continual
on-robot learning, and safety-constrained data collection.
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A ALGORITHM

Algorithm 1 PLD with base-policy initialization
Require: πb, πδ , Qϕ, Qϕ′ , α, γ, Boffline, Bonline

# Initialization
Collect n successful trials of πb: Doffline = {τ1, τ2, . . . τn}
Initialize online buffer Donline = ∅
Initialize the critic network Qϕ, Qϕ′ with Cal-QL on Doffline
Randomly initialize delta policy network πδ
# RL training
Freeze πb, denote π̄(·|s) = πb(·|s)πδ(·|s, ab)
for each RL step do

if collect data then
if Warm up step then

base model rollout a ∼ πbase(·|s)
else

sample action ā ∼ π̄(·|s)
end if
Environment step: r, s′, done = env.step(ā)
Add (s, a, µ, r, s′) to buffer Donline.

end if
Equally sample data from online and offline buffer: b ∼ Donline ∪ Doffline
Calculate TD target by bootstrapping π̄
Update Qϕ by Equation (2)
Update πδ by maximizing the SAC target
Polyak update ϕ′ = ρϕ′ + (1− ρ)ϕ

end for
#Base policy SFT
For each task, we collect hybrid behavior dataset DSFT :

π(st) =

{
abase, t < Tbase
abase + aδ, t ≥ Tbase

for each SFT step do
update πb by BC objective.

end for
Return πb

Table 3: LIBERO-90 Success rate for π0 SFT with different dataset.
PLD Data

Ratio Overall SR Seen/Unseen

0.1 0.314 0.941
0.244

0.3 0.470 0.968
0.259

0.6 0.637 0.872
0.283

0.8 0.745 0.864
0.268

1.0 0.871 0.871
N/A

Base Policy Rollout Data
Ratio Overall SR Seen/Unseen

0.1 0.103 0.523
0.056

0.3 0.068 0.198
0.015

0.6 0.328 0.506
0.062

0.8 0.344 0.423
0.031

1.0 0.488 0.488
N/A

Human Data
Ratio Overall SR Seen/Unseen

0.1 0.272 0.796
0.214

0.3 0.419 0.829
0.240

0.6 0.611 0.829
0.286

0.8 0.694 0.803
0.256

1.0 0.815 0.815
N/A
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Table 4: Selected LIBERO-90 Tasks for RL Ablation Studies.

Visualization Task Name and Description

LIBERO Task 1
close the top drawer of the cabinet and put the black bowl on top of it

LIBERO Task 2
put the black bowl in the top drawer of the cabinet

LIBERO Task 17
stack the middle black bowl on the back black bowl

LIBERO Task 21
turn on the stove and put the frying pan on it

LIBERO Task 33
close the microwave

LIBERO Task 34
put the yellow and white mug to the front of the white mug

continued on next page
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continued from previous page

Visualization Task Name and Description

LIBERO Task 46
pick up the alphabet soup and put it in the basket

LIBERO Task 47
pick up the cream cheese box and put it in the basket

B IMPLEMENTATION

B.1 RL BASELINES

To ensure an apple-to-apple comparison in Section 4.1, we implement these baselines based on the
SERL Luo et al. (2024) framework and adapt them to fit in the settings of our study. We provide a
detailed explanation of baseline formulation and our implementation.

RLPD RLPD (Ball et al., 2023) proposed a hybrid RL pipeline that leverages offline data to foster
learning in challenging sparse reward settings. During training, it equally draws samples from both
the online and offline buffer. It also uses LayerNorm to deal with the Q-value blow-ups common
when querying OOD actions under a high update-to-data (UTD) ratio. We refer to the implementa-
tion in the SERL software for both simulation and real deployment.

WSRL In the original paper (Zhou et al., 2024b), WSRL uses Cal-QL (Nakamoto et al., 2024) to
pre-train both the action and critic during the offline phase. For the online phase, it discards offline
data and warms up the replay buffer with 50k steps of pre-trained policy rollouts. We did not provide
a large, diverse dataset like D4RL (Fu et al., 2020) benchmark. Rather, we use the same procedure as
PLD to collect successful trajectories from the base model. We implement WSRL under the SERL
framework, as the UTD is no longer fixed to 4. This baseline can be considered as an ablation of
the residual policy and offline data replay. We use the WSRL baseline as an ablation study of the
warm-up online exploration using the base policy, and offline data retention through hybrid data
replay.

JSRL Jump-start RL (Uchendu et al., 2023) is a meta-algorithm using an existing guide policy
to “rolling-in”. The key mechanism is to shape the initial-state distribution for the learner: JSRL
repeatedly resets episodes from states that the guide visits (a curriculum from easy/near-goal states to
harder/far-from-goal states), making difficult tasks learnable with fewer trials. It leverages the guide
policy for data collection, without directly imitating its actions. JSRL is agnostic to the underlying
RL backbone. In practice, we choose SAC to learn the exploration policy. Since JSRL only leverages
the policy prior (VLA policy in practice) to warm-up exploration during online interaction, we use
it as an ablation of the hybrid experience replay mechanism.

Cal-QL Calibrated Q-learning (Nakamoto et al., 2024) addresses the underestimation issue of
CQL (Kumar et al., 2020), thereby significantly improving fine-tuning performance in the offline-to-
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online setting. It learns a conservative value function that underestimates the value of OOD actions,
while ensuring the values are within a reasonable scale. In practice, it under-bounds the conservative
Q function by the value of the behavior policy µ (policy corresponds to the offline dataset D). The
modified Q-learning objective is the following:

min
θ

α (Es∼D,a∼π[max(Qθ(s, a), V
µ(s))])− 1

2
Es,a∼D

[
(Qθ(s, a)− BπQ̄(s, a))2

]
,

where Q̄ is the target Q-value function and the second term corresponds to minimizing TD-error Lil-
licrap et al. (2015).

Implicit Q-Learning (IQL). IQL is an in-sample offline RL method that avoids querying Q on
out-of-distribution actions while still improving over the behavior policy (Kostrikov et al., 2021).
The key step is to fit a state value Vψ by expectile regression over the actions of the dataset and
then bootstrap Qθ toward this value. Let δ(s, a) = Qθ(s, a) − Vψ(s) and define the expectile loss
Lη(δ) = |η − 1{δ < 0}| δ2 with η ∈ (0.5, 1). IQL alternates

(V) min
ψ

E(s,a)∼D
[
Lη

(
Qθ(s, a)− Vψ(s)

)]
, (3)

(Q) min
θ

E(s,a,s′)∼D

[(
Qθ(s, a)−

(
r + γVψ(s

′)
))2]

, (4)

(policy) max
ϕ

E(s,a)∼D

[
exp

(Qθ(s,a)−Vψ(s)
β

)
log πϕ(a | s)

]
, (5)

which realizes policy improvement without out-of-distribution action queries (the policy step re-
duces to advantage-weighted regression) (Kostrikov et al., 2021). In our comparison to Cal-
QL (Nakamoto et al., 2024) as a critic-initialization baseline, we consider a simplified version of
IQL that directly regresses Qθ toward an n-step return Rt =

∑t+n−1
i=t γ i−tri + γ nVψ(st+n) using

expectile regression:
min
θ

E(st,at)∼D
[
Lη

(
Qθ(st, at)−Rt

)]
.

Unless otherwise noted, we set η = 0.7, a value shown to propagate high-value signals effectively
in the IQL paper.

B.2 DESIGN CHOICES OF PLD

In this section, we provide a detailed study of design choices that make PLD data efficient and
achieve high convergence performance. We evaluate all algorithms on the selected 8 LIBERO-90
tasks.

Reward shaping We empirically analyze the impact of naive reward shaping. Specifically, we
consider a step-wise survival cost as reward bias as in prior works Luo et al. (2024). As shown
in Figure 12, adding a slight reward bias has little impact, but it could increase convergence speed in
2 out of 8 tasks; However, A large bias could significantly hinder performance. For the major results
reported in the main paper, we do not apply reward shaping.

Action scale One core component of residential policies is the scale of exploration. To avoid un-
learning results from diverging too far from the base policy, delta actions are usually scaled down
and bounded within a range of [−ξ, ξ] (Ankile et al., 2025; Dong et al., 2025b). Figure 13 compares
different residual action scales. Setting ξ too large at the start can degrade early performance: up-
dates deviate excessively from the base policy, inducing unstable exploration, while a small ξ will
lead to insufficient exploration and lower asymptotic performance. We argue that ξ needs to be care-
fully tuned to enable exploration while minimizing performance drop. For single-arm manipulation,
we suggest ξ = 0.5 a good choice for LIBERO and ξ = 0.1 for SimplerEnv.

Critic pre-training While warm-start through pre-training the critic is beneficial to asymptotic
performance and prevents initial performance drop, the careful selection of the pre-training method
could be important as well. We compare using CQL, Cal-QL, and IQL to the pre-training method.
We consider using only 50 trajectories of successful trials of the base policy, while the standard
offline RL benchmark tends to have far larger data volume (Fu et al., 2020). In Figure 14, online
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Figure 12: Reward bias ablation. Mean and 95% CIs of rollout performance across 3 seeds.

Figure 13: Action scale ablation Mean and 95% CIs of rollout performance across 3 seeds.

performance using the Cal-QL pre-trained critic is consistently better and is robust to the conserva-
tive coefficients α. CQL demonstrates the worst performance with a severe forgetting issue, which
aligns with the previous study (Nakamoto et al., 2024).

Update frequency In the SERL pipeline, data collection and policy learning run asynchronously
and periodically exchange network parameters and online data. We ablate the update frequency—the
number of gradient steps performed by the learner between parameter synchronizations with the
data-collection actor—sweeping from 1 to 500. As shown in Figure 15, overall performance is
largely insensitive to this hyperparameter, indicating robustness across a wide range of synchroniza-
tion cadences.

On-the-Fly Policy On-the-fly (OTF) policy is introduced in (Dong et al., 2025b) to more effec-
tively maximize the value function. It samples multiple actions and backs up the maximum Q value
during TD learning. We adopt OTF to PLD while only sampling multiple actions from the residual
policy πδ and conditioned on a fixed base action. We compare different sample sizes in Figure 16.
We found that OTF can improve sample efficiency, and a larger sample size (> 20) shows significant
performance gain. But empirically, the asymptotic performance will eventually be similar. We use
OTF= 1 by default.
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Figure 14: Offline pre-training ablation. Mean and 95% CIs of rollout performance across 3
seeds.

Figure 15: Update frequency ablation. Mean and 95% CIs of rollout performance across 3 seeds.

JSRL We further provide results, including JSRL Uchendu et al. (2023) in Figure 17. We modify
the original implementation by opting for a linear scheduler. JSRL demonstrates high data efficiency
in general, but could fail to converge on some tasks. While PLD can reliably provide solutions for
all tasks.

C IMPLEMENTATION DETAILS

C.1 RL ALGORITHM

To ensure apples-to-apples comparisons, all baselines in Section 4.1 and Section B.2 use the same
network architecture—an 3-layer MLP Gaussian policy and Clipped Double Q-networks (CDQ) Fu-
jimoto et al. (2018) with LayerNorm (Ba et al., 2016). Both actor and critic use a pre-trained
ResNetV1-10 encoder to extract visual information. We present a detailed hyperparameter setting
in Table 5.
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Figure 16: On-the-fly Policy Ablation. Mean and 95% CIs of rollout performance across 3 seeds.

Figure 17: Compared with JSRL. Mean and 95% CIs of rollout performance across 3 seeds.
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Table 5: RL hyperparameter settings. We share the same setting across all tasks.

Hyperparameter Value

Training

Batch size 256

Buffer capacity 250000

Discount factor (γ) 0.99

Gradient clipping norm 1.0

Learning rate 3× 10−4

Optimizer AdamW

Reward bias 0.0

Warmup episodes 100

Critic to actor ratio 2

On-the-fly ratio 1

Residual Policy

Target entropy −act dim
2

Initial temperature (τ ) 1.0

Action scale (ξ) 0.5

Critic

Q functions ensemble 2

Target update rate 0.005

Architecture

Visual Encoder ResNetv1-10

Hidden layer dimension 256

Latent space dimension 256

Q function dropout 0.0

Activation Tanh

Normalization LayerNorm

C.2 SFT

For fine-tuning either OpenVLA or π0, we employ 8 × NVIDIA L40 GPU for LoRA (Hu et al.,
2021) fine-tuning with rank 32. For both π0, and OpenVLA-OFT, we use the default hyperparame-
ters from their open-source codebase.

D REAL-WORLD EXPERIMENTS

D.1 EXPERIMENT SETUP

We deploy PLD on a 7-DoF Franka Emika Panda with end-effector delta pose control at 20 Hz.
The robot is equipped with one wrist-mounted camera, one side-view camera, and proprioceptive
sensing as inputs. For each task, we pretrain an independent binary reward classifier by collecting
a small-scale dataset of success and failure states. The model structure follows the setup in (Luo
et al., 2025), which use a pretrained ResNet-10 and a 3-layer MLP model. We ensure the trained
classifier using augmented false positive samples until it achieves 99% success rate for each task.
Due to the 3D printed desk, we don’t need to reset the environment for the pick-cube task. PLD
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performs auto-reset, residual RL training, and SFT automatically without human supervision. For
the peg-insertion task (depicted in Figure 9), human supervisors need to randomly move the position
of the hole to increase diversity.

D.2 GENERALIZATION PERFORMANCE

We perform SFT of π0 on Pick Up Blue Cube (Clean Env) and Peg Insertion data, and evaluate the
fine-tuned policy on Pick Up Blue Cube (Cluttered Env) and Pick Up Red Cube (Cluttered Env) tasks.
The results in Table 6 show that VLA SFT on PLD data achieves better generalization performance
compared to human teleoperation data.

Table 6: Comparison of PLD vs Human Data on real-world unseen tasks (success rate).

SR Dataset PLD Data Human Data

Pick Up Blue Cube (cluttered Env) 28/30 (93.3%) 12/30 (40.0%)

Pick Up Red Cube (cluttered Env) 20/30 (66.7%) 10/30 (33.3%)

Peg Insertion 30/30 (100.0%) 30/30 (100.0%)
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